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Abstract

An advection–di�usion-limited dissolution model of an object being eroded by a two-dimensional
potential �ow is presented. By taking advantage of conformal invariance of the model, a numerical
method is introduced that tracks the evolution of the object boundary in terms of a time-dependent
Laurent series. Simulations of several dissolving objects are shown, which shrink and then collapse
to a single point in �nite time. �e simulations reveal a surprising exact relationship whereby the
collapse point is the root of a non-analytic function given in terms of the �ow velocity and the
Laurent series coe�cients describing the initial shape. �is result is subsequently derived using
residue calculus. �e structure of the non-analytic function is examined for three di�erent test
cases, and a practical approach to determine the collapse point using a modi�ed Newton–Raphson
root-�nding algorithm is outlined.
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1. Introduction

Interfacial growth processes, such as alloy solidi�cation [1, 2, 3, 4], electrodeposition [5, 6], and
crystal formation [7, 8], are responsible for a wide variety of complex natural patterns [9, 10] that
emerge due to instabilities in the underlying equations for interface motion [11, 12]. A particularly
well-studied model of interfacial growth is di�usion-limited aggregation (DLA) [13], where a solid
cluster is grown starting from a single static particle. Additional particles are introduced far away
from the cluster, carry out random walks, and adhere to the cluster upon contact, causing it to
grow. Since a random walker is more likely to �rst meet an extremity of the cluster than an interior
region, the extremities grow preferentially, leading to complex fractal clusters in discrete computer
simulations of the model [13, 14, 15, 16].
Di�usion-limited aggregation has also been studied in the continuum limit, whereby the steady-

state walker concentration satis�es Laplace’s equation outside the cluster, is zero on the cluster
boundary, and tends to a steady concentration far away from the cluster. �e growth rate of the
cluster boundary is proportional to the normal gradient of the walker concentration. �is problem
is conformally invariant, which simpli�es the analysis and allows it to be studied in detail in two
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dimensions using conformal mapping. Continuum DLA is also unstable, and perturbations in an
object’s boundary sharpen over time and eventually lead to cusps [17]. �ere is a close parallel
between continuumDLA and viscous �ngering [18], which can be modeled in terms of a conformally
invariant equations for the �uid pressure [19, 20, 21], resulting fractal shapes with a very similar
morphology to DLA [22].
While discrete DLA can be simulated on lattices, an alternative numerical approach is to exploit

the conformal invariance of the problem, and de�ne the growing cluster using a chain of conformal
maps that each add a small bump to the shape, corresponding to a single particle aggregating [23].
�e use of conformal maps opens up other possibilities, such as growing non-random clusters [24].
A further extension is to the case where the di�using particles are transported by a �uid potential
�ow around the growing cluster, which is made possible because the advection–di�usion equation
for the walker concentration is also conformally invariant [25, 26]. For this model, an asymptotic
analysis of the walker concentration has been studied [27], the discrete and continuous cases have
been compared [28], and the approach has been extended to curved surfaces [29].
In this paper, we consider when the sign of growth is switched in the DLA model, corresponding

to dissolution or erosion: we start with a solid object, and then random walkers annihilate a small
parts of it on contact. �is case has received much less investigation, since it usually leads to stable
dynamics [30, 31, 32] and thus many of the complex patterns due to growth instabilities are no longer
manifest. However, this model opens up alternative questions for study. In a previous paper [33], sev-
eral di�erent conformally invariant transport-limited dissolution models were introduced, including
the erosion of corrugations on an in�nite surface, and the expansion of a cavity due to dissolution.
�e paper also introduced the system of advection–di�usion-limited dissolution (ADLD), whereby
an object is dissolved due to a concentration of random walkers in a �uid �owing past the object. �e
object is represented by a time-dependent conformal map from the unit circle to the physical domain,
described by a Laurent series. By making use of previous asymptotic results [27], an evolution
equation for the conformal map is derived (Section 2).

�e analysis of ADLD in this previous paper was entirely analytical, and thus only considered the
simple shapes of a circle and ellipse, which can be described by three Laurent coe�cients. Here, we
investigate this model in more depth, and develop a numerical implementation that can simulate the
dissolution of arbitrarily shaped objects. Starting from the evolution equation, a system of ordinary
di�erential equations is derived that govern how the Laurent series coe�cients evolve with time
(Section 3). We numerically integrate this system using eighth-order timestepping [34, 35], which
allows the dissolution process to be simulated very accurately, close to the limit of machine precision.
Our initial numerical results for a variety of objects show that they completely dissolve in a �nite

duration with their boundaries becoming progressively smoother (Section 4). As expected, the �ow
causes the objects to dissolve more quickly on the side facing upstream, although the details of the
process are complicated, and a�ected by the precise manner that the �uid �ows past the dissolving
object. Of particular interest is the location of the collapse point, where the dissolving object �nally
vanishes. Due to the high accuracy of our simulations, we inferred an exact relationship between
the collapse point zc expressed as a complex number, the speed of the �ow, and the initial Laurent
coe�cients. �e relationship is surprising, whereby zc is the root of a non-analytic function P, the
terms of which involve complicated products of Laurent series terms. While some of these terms
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share similarities with binomial and multinomial expansions, they are distinctly di�erent, and we
are unaware of any other problem in conformal mapping or elsewhere where they occur.
In Section 5 we make use of residue calculus to derive the general form of P, using the numerical

results as a guide. �e complicated products of terms in P arise from the residue of a contour integral
where several Laurent series are multiplied together. In general, the function P has multiple roots,
thus creating ambiguity about which root is the collapse point, and in Section 6 we consider three
di�erent example objects that highlight the structure of P in more detail. To �nd the roots of P, we
introduce a modi�ed Newton–Raphson iteration. As usual for Newton–Raphson iterations, plots of
the root convergence in terms of the initial starting guess are fractal, but the non-analyticity of P
creates some distinct morphological di�erences, and the plots illustrate the di�culties of determining
the collapse point with mathematical certainty. While the dissolution model that we consider is a
simpli�ed model with stable dynamics, it has a surprising degree of mathematical structure, and our
results raise a number of questions for further study.

2. �eoretical background

We make use of non-dimensionalized units, and consider an object in two dimensions with
a time-dependent boundary S(t) as shown in Fig. 1(a). �e object is immersed in an inviscid,
irrotational �uid with velocity v(x, t), which can be written in terms of a potential ϕ(x, t) as v = ∇ϕ.
�e �uid is incompressible, so ∇ ⋅ v = 0 and hence

∇2ϕ = 0. (1)

At the boundary of the object the condition n̂ ⋅ v = n̂ ⋅ ∇ϕ = 0 is used, where n̂ is an outward-pointing
normal vector. Far away from the object the �ow tends to a constant horizontal velocity so that
v(x, t) → (1, 0) as ∣x∣ → ∞. Equivalently, the potential satis�es ϕ(x, t) → x as ∣x∣ → ∞.

�e �uid transports a random walker concentration c(x, t) that satis�es the advection–di�usion
equation

Pe∇c ⋅ ∇ϕ = ∇2c, (2)

where Pe is the Péclet number, a dimensionless quantity describing the ratio of advection to di�usion.
Far away from the object, the random walker concentration tends to unity, so that c(x, t) → 1 as
∣x∣ → ∞. �e random walkers are responsible for dissolving the object. At the boundary of the object,
c(x, 0) = 0. �e normal velocity of the object boundary S(t) is given by

σ = −λn̂ ⋅ ∇c, (3)

where λ is a dimensionless constant. Equations 1 and 2 together with the associated boundary
conditions form a closed system for (ϕ, c, S) that describe the dissolution dynamics, but they are
di�cult to solve directly. To proceed, we therefore treat the object as being in the complex z plane,
where z = x + iy, and we introduce a time-dependent conformal map described by an analytic
function z = g(w , t) that transforms the unit circle C into the object boundary S(t), as shown in
Figure 1(b). �e most general form of the conformal map is the truncated Laurent series,

g(w , t) = a(t)w +
N
∑
n=0

qn(t)w−n , (4)
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where a(t) is taken to be a real function, and qn(t) are complex functions. Herea�er, we refer to
qn as the nth mode. Both Eqs. 1 and 2 are conformally invariant. �e Laplacian is the standard
example of a conformally invariant operator, and the advective term ∇c ⋅ ∇ϕ is also conformally
invariant [25, 26].

�e boundary conditions in the w plane are di�erent. Due to the scaling factor a(t) in Eq. 4, the
boundary condition on the velocity potential becomes ϕ(w , t) → aRe(w) as ∣w∣ → ∞. We therefore
introduce a rescaled potential ϕ̂(w , t) = ϕ(w , t)/a that satis�es the original boundary condition
ϕ̂(w , t) → Re(w) as ∣w∣ → ∞. �e rescaled system for c and ϕ̂ satis�es Eqs. 1 & 2, but with a rescaled
Péclet number P̃e(t) = Pe a(t). In addition, the normal growth in the w plane is σw = σ/∣g′∣ to take
into account the local volumetric scaling of the conformal map.
Even in the w plane where the object is the unit circle, the concentration c cannot be determined

analytically. However, asymptotic expansions have been studied in detail [27], and for Péclet numbers
below 0.1, the approximation

σw ∼ λI0(P̃e)eP̃e cos θ

K0 ( P̃e2 )
− λP̃e(cos θ + ∫ P̃e0

I1(t)e t cos θ

t
dt) , (5)

is uniformly accurate in θ = argw. Taking the leading term of this approximation gives

σw ∼ λ(1 + P̃e cos θ)
−γ − log P̃e4

− λP̃e cos θ , (6)

where γ is Euler’s constant.
To make progress, we now focus on the intermediate regime starting at small Péclet number and

ending prior to collapse, in which it is reasonable to assume that log P̃e is a constant. By rescaling
the time, we choose λ = γ + log P̃e4 without loss of generality. If the constant B = Peλ is introduced,
which we subsequently refer to as the �ow strength, then Eq. 6 becomes

σw = −1 + Ba(t) cos θ . (7)

To transform this back into the physical domain, consider a point on the z(t) = g(w(t), t) on the
boundary S(t) of the object. Taking a time derivative gives ż = g′ẇ + ġ. Multiplying by wg′ and
taking the real part gives

Re(wg′ż) = Re(wg′g′ẇ) + Re(wg′ ġ). (8)
Since the point in the w plane mapping to z(t) must lie on the unit circle, it follows that ww̄ = 1
and hence Re(w̄ẇ) = 0, so the �rst term on the right hand side of Eq. 8 vanishes. �e motion of the
point in the z plane is ż = σ n̂ where n̂ is the normal vector written as a complex number. Taking into
account rotation and scaling, the normal vector is given by

n̂ = g′
∣g′∣

w
∣w∣ (9)

and hence the le� hand side of Eq. 8 is

Re(wg′ż) = Re(wg′g′wσ
∣g′w∣ ) = Re(∣g′∣σ) = σw . (10)
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z plane (physical domain) w plane (unit circle)
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z = g(w , t)
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n̂

Figure 1: (a) �e physical problem considered, where a two-dimensional object with time-dependent boundary S(t) is
dissolved a chemical concentration being transported by an incompressible potential �ow. (b) A reference domain of
the same physical problem but where the boundary is the unit circle C. A time-dependent conformal map z = g(w , t)
describes the transformation between the two domains.

Combining Eqs. 7, 8, and 10 yields

Re(wg′ ġ) = −1 + Ba(t) cos θ , (11)

which describes the dissolution process in terms of a time-dependent conformal map. For B = 0 it
becomes the Polubarinova–Galin equation, which has been used in previous continuumDLA studies
without advection [17, 19]. Here, the incorporation of the Ba(t) cos θ term represents the simplest
extension to account for the �uid �ow and is therefore a useful model to study in its own right.

3. Numerical method and implementation

3.1. Discrete formulation of the governing equation
We now make use of Eq. 11 to formulate a numerical solution technique. We represent the

dissolving object via the time-dependent conformal map in Eq. 4 with a �xed value of N ≥ 1. We
write the qn(t) in component form as bn(t) + icn(t), and describe the shape of the object by the
real vector s(t) = (a, b0, b1, . . . , bN , c0, c1, . . . , cN), with a total of 2N + 3 components. Using the two
expressions

wg′ = aw̄ −
N
∑
n=0

n(bn − icn)w̄−n , ġ = ȧ +
N
∑
n=0

(ḃn + i ċn)w−n , (12)

Eq. 11 becomes

−1 + Ba cos θ = Re([ae−iθ −
N
∑
n=0

n(bn − icn)e inθ] [ȧe iθ +
N
∑
n=0

(ḃn + i ċn)e−inθ]) . (13)

Eq. 13 is real, and can be expressed in terms of components cos nθ and sin nθ for n = 1, . . . ,N + 1,
plus a constant term. Equating both sides of the Eq. 13 in each component leads to 2N + 3 coupled
ordinary di�erential equations for the 2N + 3 variables a(t), bn(t), and cn(t). Hence, other than for
cases where these equations are degenerate, ṡwill be uniquely determined in terms of s. Furthermore,
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since Eq. 13 does not feature any higher harmonic of sine and cosine, it follows s exactly represents
the time-evolution prescribed by Eq. 11; if a shape initially is described in terms of a Laurent series
using terms up to qN , it will remain perfectly described by this Laurent series throughout the whole
dissolution process.

�e details of equating each component of Eq. 13 are given in Appendix A. Equating the constant
terms gives

aȧ −
N
∑
n=0

n(bnḃn + cn ċn) = −1. (14)

Equating the terms with factors cos(N + 1)θ and sin(N + 1)θ gives

aḃN = ȧNbN , aċN = ȧNcN , (15)

respectively. Equating the terms with a factor of sin nθ for n = 1, . . . ,N gives

−ȧ(n − 1)cn−1 + aċn−1 −
N−n
∑
m=0

[(m + n)(cm+nḃm − bm+n ċm) −m(cmḃm+n − bm ċm+n)] = 0. (16)

Finally, equating the terms with a factor of cos nθ for n = 1, . . . ,N gives

−ȧ(n − 1)bn−1 + aḃn−1 −
N−n
∑
m=0

[(m + n)(bm+nḃm + cm+n ċm) +m(bmḃm+n + cm ċm+n)] = βn (17)

where βn = Ba if n = 1, and βn = 0 otherwise. �e combination of Eqs. 14, 15, 16, and 17 can then be
expressed as a linear system

M(s)ṡ = v(s) (18)

whereM and v are matrix and vector functions of s, respectively. By writing Eq. 18 as ṡ = M−1(s)v(s),
the system can be integrated numerically.

3.2. Numerical implementation
�e simulations are carried out using double-precision �oating point arithmetic, using LA-

PACK [36] to invert the linear system in Eq. 18. To time-integrate the equation, the DOP853 integra-
tion routine described by Hairer et al. [34] is used. �is routine uses the eighth-order, thirteen-step
Dormand–Prince integration method that has the �rst-same-as-last (FSAL) property, requiring
twelve function evaluations per timestep [37]. As described in more detail later, the components of s
can sometimes vary rapidly, particularly close to the time of collapse. �e DOP853 routine employs
adaptive timestepping, which can retain accuracy in this situation. �e routine estimates the local
error1 using a combination of ��h-order and third-order embedded numerical schemes. For all of
the subsequent results, the timestep size ∆t is continually adjusted so that the absolute local error per
timestep remains below a tolerance of 10−14. If the estimated error of a timestep exceeds the tolerance,
then the timestep is rejected and the integrator tries again with a reduced ∆t.

1�e local error is de�ned as (∑2N+3i=1 e2i )1/2 where e i is the estimated error of the ith component of s during a single
timestep.
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�ere are three scenarios where the DOP853 integrator terminates early: (i) if a maximum
number of timesteps is reached, (ii) if the equations are detected as sti� [35], or (iii) if the timestep
∆t required achieve the desired local error becomes too small. In the following results, we have only
observed the third scenario. Speci�cally, this occurs when ∆t becomes smaller than 10urt, where
ur = 2.3 × 10−16 is an estimate of the smallest number satisfying 1.0 + ur > 1.0 in double-precision
�oating point arithmetic. In certain cases, such as the examples of Subsecs. 6.1 and 6.3, the third
scenario signi�es a breakdown of the physical problem due to the formation of a cusp. However, the
third scenario also occurs in many normal cases close to the time of collapse tc due to a(t) varying
rapidly. If the DOP853 integrator terminates within 104ur of tc then we manually advance to tc using
timesteps of 10ur or less. While this may no longer achieve the required level of local error, we �nd
that it provides several additional digits of accuracy in the collapse point location, which is important
in some of the later analysis.
In some of the subsequent results, we need to evaluate s at time points spaced at �xed intervals,

which may not precisely coincide with the time points that are selected during the adaptive time-
integration, which are usually unevenly spaced. To solve this we make use of the dense output
formulae described by Hairer et al. [34]. By doing three additional integration steps, a seventh-order
accurate interpolation formula over the interval of a timestep can be calculated, allowing s to be
evaluated at any speci�c time point. For computational e�ciency, these three additional steps are
only done when one or more output time points overlaps with the current timestep interval.

�e simulations are implemented in C++, and the code required to carry out all of the subse-
quent analysis is provided as Supplementary Information. For all of the results presented here, the
computation time required to simulate the dissolution process is negligible, taking less than 0.25 s
on a Mac Pro (Late 2013) with an 8-core 3GHz Intel Xeon E5 processor.

4. Results

4.1. Analytic results for the area and highest mode amplitude
Before presenting results of the numerical method, it is useful to establish some basic features of

the equations presented in the previous section. �e area of the object is given by the integral

A(t) = ∫∫Ω dz (19)

where Ω is the region enclosed by S(t). Using Green’s identity in complex form,

A(t) = − 1
2i ∫∮S(t)

zdz̄ = 1
2i ∫C g(w)g′(w)dw̄ . (20)

Since ww̄ = 1 on the unit circle, the integrand can be converted into an analytic function,

A(t) = 1
2i ∫C g(w)g′(w)dw

w2
= 1
2i ∫C (a −

N
∑
n=0

qnnw−(n+1))( a
w
+

N
∑
n=0

q̄nwn) dw (21)

and applying residue calculus gives,

A(t) = π (a2 −
N
∑
n=0

n∣qn∣2) = π (a2 −
N
∑
n=0

n(b2n + c2n)) , (22)
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describing the area as a function of the current mode amplitudes. Furthermore, time-integrating
Eq. 14 gives

a2 −
N
∑
n=0

n(b2n + c2n) = C − 2t, (23)

where C is a constant, and hence
A(t) = A0 − 2πt, (24)

where A0 is the initial area of the object. �e area of the object therefore descreases at a constant rate,
independent of the �ow parameter B, with the time to collapse given by

tc =
A0
2π

= 1
2
(a2 −

N
∑
n=0

n∣qn∣2) . (25)

�e modes in Eq. 15 also have �rst integrals,

bN = kaN , cN = l aN (26)

for some constants k and l . �e highest mode amplitudes are therefore only dependent on the
conformal radius a. Due to the couplings in Eqs. 16 and 17, similar results for the lower modes do
not exist.

4.2. Initial numerical results
Figure 2 shows the dissolution process for six objects calculated using the numerical code, where

for all cases a(0) = 1 and B = 0.7. Figure 2(a) shows the dissolution process for a circle. �roughout
the process, the circle retains its shape although its center progressively moves rightward due to
the e�ect of the �ow, which preferentially dissolves the side of the circle facing upstream. A similar
behavior is visible in Fig. 2(b) for an ellipse, which keeps its shape through the dissolution process,
while the ellipse center moves up and right. �e results for Figs. 2(a) and 2(b) match those that were
previously studied analytically [33].
Figure 2(c) shows the dissolution process for a triangular-shaped object given by setting q2 = −0.35

initially. In general, the mode qn is responsible for an (n + 1)-fold perturbation of the boundary. If
all of the qn are initially real, the object is symmetric about the x axis, and will remain symmetric
throughout the dissolution process. For the case shown, the point of the triangle that faces upstream
is more rapidly dissolved than the other two. Unlike the previous two examples that retain their
shape during dissolution, the triangle becomes progressively more rounded at later times. Figure 2(d)
shows the dissolution process when the previous object is rotated by 90○, which is achieved by setting
q2 = 0.35i. �is object is initially symmetric about the y axis, but the �ow causes this symmetry to
be lost as time passes. �e collapse point is slightly up and right from the origin.
Figure 2(e) shows the dissolution process for the case when q15 = 0.05i initially, which creates

a 16-fold perturbation in the boundary. A�er 20% of the object has dissolved, this perturbation is
almost completely removed, with the object’s shape approaching that of a circle. �is is expected
from Eq. 26, which shows that the highest mode will be proportional aN and hence decay more
rapidly for larger N . If several modes are initially non-zero as in Fig. 2(f) an irregular shape is formed,
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Figure 2: Sample dissolution processes for six objects, all starting with a = 1 and using B = 0.7. �e six objects and initial
non-zero modes are (a) a circle, (b) an ellipse with q1 = 0.3 + 0.2i, (c) a triangle with q2 = −0.35, (d) a triangle with
q2 = 0.35i, (e) a corrugated circle with q15 = 0.05i, and (f) an irregular object with q1 = −0.28 + 0.2i and q6 = 0.1. �e
white lines show the �ow streamlines around the initial shape. �e colored regions shown the shapes of the object at
successive times as it dissolves, where each progressive region represents the dissolution of 20% of the object’s initial area.
�e black circles indicate the �nal points of collapse.
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which behaves like a combination of the previous examples, with sharp features in the boundary
being rapidly removed.
We now examine the evolution of the modes and look in detail at the e�ect of the �ow strength

B. We make use of the speci�c example of a diamond shape given by a = 1 and q3 = 0.25 initially.
Figure 3(a) shows the dissolution process for the case of zero �ow when B = 0. Similar to Figs. 2(c)
and 2(d) the object becomes progressively more circular, but without the presence of �ow it retains
symmetry in the x axis, y axis, and the line x = y. Figure 3(b) shows the time-evolution of the
modes throughout the dissolution process. �e modes q0, q1, q2, which were zero initially, remain
zero throughout the dissolution process—this is expected since any non-zero contribution from
these modes would break at least one of the symmetries seen in Fig. 3(a). �e dissolution process
is therefore described entirely in terms of a and q3, and could therefore be determined analytically
using Eqs. 23 and 26, as considered in previous work [17, 38, 33]. Since q0 remains at zero, the collapse
point is at the origin.
Figure 3(c) shows the dissolution of the diamond when the �ow parameter is B = 0.7. As in the

previous examples of Fig. 2, the diamond dissolves more rapidly on the side facing upstream, and
the collapse point is slightly downstream. �e time evolution of the modes (Fig. 3(d)) is signi�cantly
altered in this case, with all three components q0, q1, and q2 becoming non-zero during the dissolution
process, due to the mixing between modes via the advection term in Eq. 11. �e e�ects of these three
modes, such as the translation of the object center, and the loss of symmetry about the y axis, are
clearly visible in Fig. 3(c). �e q1 and q2 modes decay to zero at the point of collapse, while the q0
mode remains positive. �e value of q0 at t = tc gives the collapse point position.
Figures 3(b) and 3(d) also indicate the adaptive integration timesteps chosen by the DOP853

integration routine. In the middle of the dissolution process, at t ≈ 0.2, the routine is able to take
timesteps up to approximately 0.02 while retaining the desired level of local error of 10−14. However,
close to t = tc, many more timesteps are needed to resolve the rapid change in a. For the example
shown in Fig. 3(d), a total of 332 integration timesteps are evaluated. During the DOP853 integration
routine, 199 steps are accepted, and 128 are rejected due to the local error estimate exceeding the
given tolerance. Five additional small steps are required to reach the collapse time tc.

4.3. Inferring analytic formulae for the collapse point
Figures 2 and 3 show that the collapse point zc = xc + iyc of the dissolution process is dependent

on both the �ow strength B and the initial shape of the body as described by its Laurent coe�cients.
Since there are no other quantities in the problem, zc must be given in terms of B and the Laurent
coe�cients only. �e precise form of this dependence is not obvious, as the collapse point is given as
the component q0 of the nonlinear di�erential equation system, evaluated at the time of collapse tc .
In this section, we infer the exact form of this relationship by exploiting the very high accuracy of

the simulations, which allow the collapse point to be calculated to at least twelve decimal places. To
simplify the analysis, we set a = 1 throughout this section. To begin, we restrict to the case when the
Laurent coe�cients are given purely in terms of real components b j. As discussed in the previous
section, the components will remain real throughout the simulation, and the object will be symmetric
about the x axis. Hence the collapse point zc will be real, and determined entirely in terms of the
horizontal position xc.
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Figure 3: (a) Dissolution process of a diamond shape initially described by non-zero modes a = 1 and q3 = 0.25 for the
case of zero �ow, B = 0. �e colored regions shown the shapes of the object at successive times as it dissolves, where each
progressive region represents the dissolution of 20% of the object’s area, with the black circle indicating the point of
collapse. (b) Time-evolution of the modes describing the diamond during dissolution, where the small circles on each
curve show the integration timesteps using the adaptive DOP853 integration scheme. (c) Dissolution process of the
diamond when the �ow is B = 0.7. (d) Time-evolution of the modes describing the diamond during dissolution with
�ow, with the small circles on each curve showing the integration timesteps.
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Figure 4: An example procedure to infer the analytic formula for position of collapse point in terms of the initial modes.
(a–d) Dissolution processes of an ellipse given by a = 1, q1 = 0.3 for �ow speeds of B = 0, 0.3, 0.6, 0.9, respectively, using
the same visual representation as described in Fig. 2. (e) Plot of the numerically computed horizontal collapse point
position xc = Re zc as a function of B for three di�erent values of b1, which match linear relationships to numerical
precision, suggesting an analytical relationship.

Figure 4 shows an example of inferring an analytic relationship, for the case of an ellipse where
the only non-zero Laurent coe�cient is b1. Figures 4(a–d) show four dissolution process are shown
for when b1 = 0.3 and the �ow strength is B = 0, 0.3, 0.6, 0.9, respectively. �e collapse point xc
moves progressively right as B is increased. In Fig. 4(e), the numerically computed xc is plotted as a
function of B, for three di�erent values of b1 of 0.0, 0.3, and 0.6. �e plot demonstrates that xc is
linear in B, with the slope depending on b1. �e numerical data matches the relationship

xc =
B(1 + b1)
2

, (27)

with the sum of square residuals being 1.4 × 10−30, 1.5 × 10−30, and 2.6 × 10−30 for b1 = 0, 0.3, 0.6,
respectively. �ese small residuals, which are of a similar size to the expected numerical error,
strongly suggest that this an exact relationship for the original mathematical problem.
One can extend this analysis to the case where the only non-zero Laurent coe�cient is bn, and

determine that xc satis�es the polynomial relationship
B
2
= xc − bnxn

c

1 − nb2n
. (28)

For n = 1, this is consistent with Eq. 27 for the ellipse, although it also reveals more structure, and by
substituting Eq. 25 the relationship simpli�es to

Btc = xc − bnxn
c . (29)
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n Q(xc)
2 −b2x2c + 2b2b1 + (1 − b1)xc
3 −b3x3c + 3b3b1xc + (1 − b1)xc
4 −b4x4c + 4b4b1x2c − 2b4b21 + (1 − b1)xc
5 −b5x5c + 5b5b1x3c − 5b5b21 )xc + (1 − b1)xc
6 −b6x6c + 6b6b1x4c − 9b6b21 x2c + 2b6b31 + (1 − b1)xc
7 −b7x7c + 7b7b1x5c − 14b7b21 x3c + 7b7b31 xc + (1 − b1)xc
8 −b8x8c + 8b8b1x6c − 20b8b21 x4c + 16b8b31 x2c − 2b8b41 + (1 − b1)xc
9 −b9x9c + 9b9b1x7c − 27b9b21 x5c + 30b9b31 x3c + 9b9b41 xc + (1 − b1)xc
10 −b10x10c + 10b10b1x8c − 35b10b21 x6c + 50b10b31 x4c − 25b10b41 x2c + 2b10b51 + (1 − b1)xc
−bnxnc + nbnb1xn−2c −

n(n−3)
2 bnb21 xn−4c +

n(n−4)(n−5)
6 bnb31 xn−6c − . . . + (1 − b1)xc

Table 1: Examples of the analytic relationship Btc = Q(xc) for the horizontal collapse point position xc that were inferred
numerically using the high-precision calculations, for the case of an object described by two real non-zero Laurent
coe�cients b1 and bn . �e integer coe�cients colored in blue, green, and red follow patterns. �e �nal line of the table
shows an inferred general formula.

To proceed, we now consider if there are two non-zero Laurent coe�cients. �e simplest case would
be b0 and bn being non-zero, for n ≥ 1. Since b0 corresponds to a translation, the relationship is
immediately given by

Btc = (xc − b0) − bn(xc − b0)n , (30)

without the need for for simulation. Expanding the second term yields

Btc = −bnxn
c + nbnb0xn−1

c − n(n−1)
2 bnb20xn−2

c + n(n−1)(n−2)
6 bnb30xn−3

c − . . . + (xc − b0) (31)

where the coe�cients on the powers of xc follow Pascal’s triangle.
�e next case to consider is when b1 and bn are non-zero, for n ≥ 2. Unlike the previous case

this cannot be immediately derived, and must be inferred through �tting to simulation. Table 1
shows the derived results for the cases of n = 2, 3, . . . , 10 where a suprising pattern emerges. We see
polynomials that bear some resemblance to a binomial expansion, although in contrast to Eq. 31,
only every second power of xc is present. Furthermore, the coe�cients in front of the terms are
integer, but of a more complicated form than Pascal’s triangle. Unlike the previous case, the more
complicated form of these polynomials precludes rewriting them in a succinct form like Eq. 30. �e
pattern continues for the case when b2 and bn are non-zero, for n ≥ 3. As shown in Table 2, only
every third power of xc is present. �e integer coe�cients follow a natural progression from those in
Table 1.
In Tables 1 and 2, we observe that each pair of non-zero Laurent coe�cients leads to a combination

of additional terms appearing in the collapse point polynomial. Building on these results, we inferred
and numerically tested the formula

Btc = −b4x4c − x3c + x2c(4b4b1 − b2) + xc(1− b1 + 3b3b1 + 4b4b2) + 2b2b1 + 3b3b2 + 4b4b3 − 2b4b21 (32)
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n Q(xc)
3 −b3x3c + 3b3b2 + (xc − b2x2c)
4 −b4x4c + 4b4b2xc + (xc − b2x2c)
5 −b5x5c + 5b5b2x2c + (xc − b2x2c)
6 −b6x6c + 6b6b2x3c − 3b6b22 + (xc − b2x2c)
7 −b7x7c + 7b7b2x4c − 7b7b22xc + (xc − b2x2c)
8 −b8x8c + 8b8b2x5c − 12b8b22x2c + (xc − b2x2c)
9 −b9x9c + 9b9b2x6c − 18b9b22x3c + 3b9b31 + (xc − b2x2c)
10 −b10x10c + 10b10b2x7c − 25b10b22x4c + 10b10b32xc + (xc − b2x2c)
11 −b11x11c + 11b11b2x8c − 33b11b22x5c + 22b11b32x2c + (xc − b2x2c)
12 −b12x12c + 12b12b2x9c − 42b12b22x6c + 40b12b32x3c − 3b12b42 + (xc − b2x2c)
−bnxnc + nbnb2xn−3c −

n(n−5)
2 bnb22xn−6c +

n(n−7)(n−8)
6 bnb32xn−9c − . . . + (xc − b2x2c)

Table 2: Examples of the analytic relationship Btc = Q(xc) for the horizontal collapse point position xc that were inferred
numerically using the high-precision calculations, for the case of an object described by two real non-zero Laurent
coe�cients b2 and bn . �e integer coe�cients colored in blue, green, and red follow patterns. �e �nal line of the table
shows an inferred general formula.

for the case of all four coe�cients b1, b2, b3, and b4 being non-zero. In Eq. 32 all terms involve powers
of two di�erent bn, but for higher non-zero Laurent coe�cients, terms with three or more di�erent
bn arise. If b1, b2, and b5 are non-zero, then we �nd that

Btc = −b5x5c + 5b5b1x3c + (5b5b2 − b2)x2c + (1 − b1 − 5b5b21 ) + 2b2b1 − 4b5b2b1, (33)

where the last term on the right hand side is a product of all three non-zero Laurent coe�cients.
�e �nal generalization that we consider is when the Laurent coe�cients are complex. �e �tting

procedure described in Fig. 4 becomes more complicated in this case, since both the horizontal
position xc and the vertical position yc of the collapse point will vary. For the case of the Laurent
coe�cients q1 and q4 being non-zero and complex, we inferred the formula

Btc = z̄c − q̄1zc − q̄4z4c + 4q̄4q1z2c − 2q̄4q21 , (34)

which is a generalization of the formula for n = 4 in Table 1. �e generalization to complex coe�cients
introduces conjugates on some terms, and the right hand side is not an analytic function of zc due to
the �rst term featuring z̄c. If q4 = 0 also, then Eq. 34 simpli�es to

B
2
= z̄c − q̄1zc
1 − q1q̄1

, (35)

which is equivalent to the formula for an ellipse zc = B
2 (1 + q1) that was derived in previous work [33].

5. Derivation of the collapse point formulae

�e previous section revealed a surprising and complicated connection between the collapse
point, initial shape of the object, and the �ow strength. Using these numerical results as a guide,
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we now analytically derive ths connection. While the formulae in Tables 1 and 2 are complicated,
it is reasonable to imagine that the speci�c coe�cients could occur as the residue from a contour
integral, perhaps involving the product of several Laurent series, and thus our �rst step is to consider
a general integral quantity and determine its behavior during the dissolution process.

5.1. Time-evolution of an integral quantity
Consider the expression

I(t) = ∫∮S(t)
F(z)dz̄ (36)

where z = g(w), S(t) is the shape of the object, and F is an arbitrary analytic function. �is can be
written as

I(t) = ∫∮C
F(g(w))g′(w)dw̄ , (37)

where C is the unit circle, and w = e iθ . Since w̄w = 1 on the unit circle, this can be converted into the
integral of an analytic function,

I(t) = − ∫∮C
F(g(w))ḡ′ ( 1w)

dw
w2
, (38)

which can be written as
I(t) = ∫∮C

F(g(w)) d
dw

(ḡ ( 1w)) dw (39)

and hence integration by parts can be used to obtain

I(t) = − ∫∮C
F ′(g(w))g′(w)ḡ ( 1w) dw . (40)

�is is the �rst of two expressions that will be used later. To obtain a second integral expression,
consider taking the time derivative, which gives

dI
dt

= − ∫∮C

d
dw

(F ′(g(w)))ġ(w)ḡ ( 1w) dw − ∫∮C
F ′(g(w)) (ġ′(w)ḡ ( 1w) + g′(w) ˙̄g ( 1w)) dw . (41)

Integration by parts can be applied to the �rst integral, which will transfer the derivative onto the
ġ(w)ḡ(1/w) terms. Note that

d
dw

(ġ(w)ḡ ( 1w)) = ġ′(w)ḡ ( 1w) −
ġ(w)
w2

ḡ′ ( 1w) (42)

and since the �rst term of this expression will cancel with one of the terms in second integral of
Eq. 41, it follows that

dI
dt

= − ∫∮C
F ′(g(w))( ġ(w)

w2
ḡ′ ( 1w) + g′(w) ˙̄g ( 1w)) dw . (43)
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By substituting w = e iθ and making use of Eq. 11,

dI
dt

= − ∫ 2π0 F ′(g(e iθ))i (ġ(e iθ)g′(e iθ)e−iθ + g′(e iθ)ġ(e iθ)e iθ) dθ

= −2i ∫ 2π0 F ′(g(e iθ))Re (g′(e iθ)e iθ ġ(e iθ)) dθ

= 2i ∫ 2π0 F ′(g(e iθ))(1 − Ba cos θ) dθ . (44)

�is can be written as a contour integral as

dI
dt

= i ∫ 2π0 F ′(g(e iθ))(2 − Bae iθ − Bae−iθ)dθ

= ∫∮C

F ′(g(w))(2w − Ba − Baw2)dw
w2

, (45)

yielding the second integral expression that will be used later. As a check, it is useful to consider
when F ′(z) = 1, in which case the integral matches the one in Eq. 20 for the area of the object. �en

dI
dt

= ∫∮C

(2w − Ba − Baw2)dw
w2

= 2πi(2) = 4πi (46)

and

I(t) = − ∫∮C
(a −

N
∑
n=0

qnnw−(n+1))( a
w
+

N
∑
n=0

q̄nwn) dw = −2πi (a2 −
N
∑
n=0

n∣qn∣2) = −2πiA(t) (47)

�is gives Ȧ(t) = −2, which agrees with Eq. 23.

5.2. A speci�c integral quantity
A interesting candidate for the function F ′ is

F ′(z) = 1
z − zc

(48)

where zc is the collapse point. �is function is particularly special, since as the object is dissolving,
the integrals given in Eqs. 40 and 45 will always be �nite, as the integration contour will never pass
over the singularity. Even though the function F(z) = log(z − zc) is multivalued, the two integral
expressions that will be used in the following derivation, Eqs. 40 and 45, are related to each other
through a derivation only involving F ′, and thus it is not necessary to consider branch cuts that
would be needed to integrate F. Equation 45 will give

dI
dt

= ∫∮C

(2w − Ba − Baw2)dw
w2(aw − zc +∑N

n=0 qnw−n)
= ∫∮C

(2w − Ba − Baw2)dw
aw3 (1 − 1

aw (zc −∑N
n=0 qnw−n))

. (49)

Since g(w , t) is a conformal map that takes the region ∣w∣ ≥ 1 to the region outside the object, there
can be no solutions to g(w , t) = zc for ∣w∣ ≥ 1 and thus the above integrand will have no poles for
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∣w∣ ≥ 1. Hence the integration contour can be deformed outwards and evaluated in terms of the
residue at in�nity, which is given by the coe�cient of the w−1 term, namely −Ba/a = −B. Hence

dI
dt

= −2πiB (50)

and therefore I(t) = D − 2πiBt for some constant D. To determine the constant, we consider the
limit as t → tc, where a → 0, q0 → zc, and qn → 0 for all n > 0. �en Eq. 40 shows that

I(t) → − ∫∮C

a ( a
w + q̄0) dw

(aw − zc + q0)
= − ∫∮C

aq̄0
aw

dw = −2πiz̄c (51)

and therefore I(t) = 2πi(B(tc − t) − z̄c). Returning to Eq. 40, and examining the integral at the
initial time,

I(0) = − ∫∮C

(a −∑N
n=0 qnnw−(n+1)) ( a

w +∑
N
n=0 q̄nwn) dw

aw − zc +∑N
n=0 qnw−n , (52)

which for large w can be expanded as

I(0) = − ∫∮C

(a −∑N
n=0 qnnw−(n+1)) ( a

w +∑
N
n=0 q̄nwn) dw

(aw − zc +∑N
n=0 qnw−n)

= − ∫∮C

(a −∑N
n=0 qnnw−(n+1)) ( a

w +∑
N
n=0 q̄nwn) dw

aw (1 − 1
aw (zc −∑N

n=0 qnw−n))

= − ∫∮C

1
aw

(a −
N
∑
n=0

nqn
wn+1)( a

w
+

N
∑
n=0

q̄nwn)
⎛
⎜
⎝

∞
∑
k=0

(zc −∑N
n=0 qnw−n)k

akwk

⎞
⎟
⎠
dw . (53)

While complicated, this integral will give the desired relationship between zc and B. By expanding
out the three power series, and looking at terms of the formw−1 that will give a residue at in�nity, the
integral will simplify to a polynomial in zc. For example, consider the case of only q1 and q4 being
non-zero. In that case, for w large, and neglecting terms smaller than w−1,

I(0) = − ∫∮C
( 1
w
− q1
aw3

− 4q4
aw6

)( a
w
+ q̄1w + q̄4w4)(

∞
∑
k=0

1
ak

(zc
w
− q1
w2

− q4
w5

)
k
) dw

= − ∫∮C
(q̄4w3 + q̄1 −

q̄4q1w
a

+ . . .)(1 + 1
a
(zc
w
− q1
w2

− q4
w5

) + 1
a2

(zc
w
− q1
w2

− q4
w5

)
2
+ . . .) dw

= − ∫∮C
( 1
w

( q̄4z
4
c

a4
− 3q̄4q1z

2
c

a3
+ q̄4q21

a2
+ q̄1zc

a
− q̄4q1z2c

a3
+ q̄4q21

a2
) + . . .) dw

= −2πi ( q̄4z
4
c

a4
− 4q̄4q1z

2
c

a3
+ 2q̄4q

2
1

a2
+ q̄1zc

a
) . (54)

By using I(0) = 2πi(Btc − z̄c) it follows that

a4Btc = a4z̄c − q̄4z4c + 4aq̄4q1z2c − 2a2q̄4q21 − a3q̄1zc . (55)
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If a = 1 then
Btc = z̄c − q̄4z4c + 4q̄4q1z2c − 2q̄4q21 − q̄1zc , (56)

which agrees with Eq. 34 that was found numerically.

6. �ree examples of the collapse point equation

For a general case, the collapse point zc satis�es the equation

0 = P(zc) = z̄c − Btc +
1
2πi ∫∮S(0)

log(z − zc)dz̄, (57)

de�ned at points within the object, where the integral in this equation is evaluated as a polynomial
in zc following the series expansion procedure described in the previous section. �e polynomial
can then be analytically extended to give an expression for P(zc) at points outside the object also.
However, at points outside the object, the analytic extension will not match the value of the integral,
since the enclosed residues will be di�erent. Equation 57 is complicated: it is not analytic due to
the presence of z̄c, and in general it will contain higher powers of zc, so it is likely to have multiple
solutions. To use this equation as a predictive tool, it is useful to understand the typical structure of P
and know how to select the correct root. We now consider three examples that explore the structure
of P in relation to the object shape.

6.1. First example: an irregular pentagonal shape
Consider an example based on Eq. 56, where the function P can be written as

P(zc) = z̄c − Btc − q̄4z4c + 4q̄4q1z2c − 2q̄4q21 − q̄1zc , (58)

where tc = 1 − ∣q1∣2 − 4∣q4∣2. Fig. 5 shows a plot of the modulus and argument of this function for the
case of a = 1, q1 = 1

10 + 3
20 i, q4 = 1

10 + 1
20 i, and B = 7

20 . �e shape of the object is also shown. �ere are
�ve roots that lie outside the object. �ere is one root inside the object, which must be the collapse
point. Furthermore, the argument in the neighborhood of the interior root rotates in the negative
(anti-analytic) sense, whereas the argument near each exterior root rotates in the positive (analytic)
sense. By considering the Taylor series of P at a given root, one can mathematically determine
whether a root is positive-sense or negative-sense by whether ∣Pz∣2 − ∣Pz̄∣2 is positive or negative,
respectively. From Eq. 51, the collapse point must be given by a negative-sense root, and hence for
this example there is an unambiguous choice, of the single negative-sense root within the object.
It is interesting to consider whether the other roots have physical signi�cance. Figure 5(b)

shows a zoomed-in region of the dissolution process for this example, con�rming that the interior
negative-sense root visible in Fig. 5(a) is indeed the collapse point. �e �gure also shows a nearby
positive-sense root. If the system is time-integrated backward, then the boundary of the object
sharpens toward the root. �is leads to a cusp singularity in a �nite time t = −0.06133, which appears
similar to cusp development in related systems [17, 38]. As the cusp is approached, the matrixM(s)
becomes singular, and the DOP853 integrator terminates because the timestep required to keep the
local error below the tolerance is smaller than what can be resolved with double precision. While the
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Figure 5: (a) �e thick black line shows an �rst example object, where a = 1 and the only non-zero Laurent coe�cients
are q1 = 1

10 +
3
20 i and q4 =

1
10 +

1
20 i. �e colors show the argument of the function P(z) for B =

7
20 , whose roots represent

candidates for the collapse point of the object as it dissolves. �e dashed lines are contours of ∣P(z)∣ at values of n2−n+1
2

for n ∈ N. (b) A zoomed-in region showing forward and backward time-evolution of the object boundary at intervals of
1
20 tc . �e unique negative-sense root of P is shown by a circle, and one of the positive-sense roots is shown by a triangle.
�e four other positive-sense roots are outside the region that is plotted.

positive-sense root appears connected to the development of the cusp, it is not located exactly at the
cusp, and thus it is not clear what, if any, its precise physical signi�cance is.
A practical way to determine the root positions is to make use of a Newton–Raphson iteration,

modi�ed to take into account that P also depends on the conjugate of zc. An appropriate Newton–
Raphson iteration can be constructed by viewing P as a function of two variables zc and z̄c, and
considering the two-function system of P and P̄. For a guess of the form z(n)c , the vector generalization
of the Newton–Raphson method to give an improved guess z(n+1)c is then

⎛
⎝

Pz Pz̄
P̄z P̄z̄

⎞
⎠
⎛
⎝

z(n+1)c − z(n)c

z̄(n+1)c − z̄(n)c

⎞
⎠
= −

⎛
⎝

P
P̄

⎞
⎠
, (59)

which leads to the two equations

Pz(z(n+1)c − z(n)c ) + Pz̄(z̄(n+1)c − z(n)c ) = −P, (60)
P̄z(z(n+1)c − z(n)c ) + P̄z̄(z̄(n+1)c − z(n)c ) = −P̄. (61)
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Figure 6: Plot showing which root of P a Newton–Raphson iteration will converge to when starting at z(0)c , for the
example con�guration given in Fig. 5. �e �ve positive-sense roots of P are shown by small black triangles, and the
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Substituting Eq. 61 into Eq. 60 to eliminate (z̄(n+1)c − z̄(n)c ) gives the iterative equation

z(n+1)c = z(n)c + P̄Pz̄ − PPz
∣Pz∣2 − ∣Pz̄∣2

. (62)

As expected, if Pz̄ = 0, then this equation reduces to the standard complex Newton–Raphson iteration.
Figure 6 shows a plot of which root the Newton–Raphson iteration will converge to as a function

of the starting guess z(0)c . As is typical for Newton–Raphson iterations of complex functions, the
plot has a fractal structure, with large basins of attraction surrounding each root. However, the
plot has some distinctly di�erent features to usual Newton fractals [39, 40] arising from the vector
generalization of the iteration to non-analytic functions. In particular, the denominator ∣Pz∣2 − ∣Pz̄∣2
featuring in Eq. 62 is zero on a one-dimensional loop of points surrounding the central root. Any
starting guess that approaches this loop will therefore undergo a very large initial step. In Fig. 6, this
loop forms the dividing line between the �ve outer colored basins and the central region. Due to the
self-similarity of the fractal, the structure surrounding this loop is replicated in other parts of the
plot. �is is in noticeable contrast to the regular Newton fractal for an analytic function f (z), where
the iteration becomes singular only at a zero-dimensional set of points where f ′(z) = 0.
On Figure 6, the object boundary is shown by the dashed black line, and it is almost entirely

contained within the central white region, meaning that a starting guess within the object is likely
to converge to the collapse point; if the guess is chosen near the center of the object, such as at q0,
the iteration converges very rapidly and reliably. However the plot also indicates that for several
small regions inside the object (e.g. near the bottom le� corner) the Newton–Raphson method may
converge to one of the exterior roots.

6.2. Second example: a dumbbell-shaped object dividing in two
Figure 7(a) shows the dissolution process for the case of a long dumbbell-shaped object, where

a = 1, q1 = − 710 , q3 = − 14 , B = 3
5 , and all other Laurent series coe�cients are zero. In this case, the

thin vertical sliver dissolves away leaving two separated fragments. While the system can be time-
integrated past this point with M(s) remaining non-singular, the contour begins to overlap with
itself, thus losing physical validity. �e function P for this example is

P(zc) = z̄c − Btc − q̄3z3c + 3q̄3q1zc − q̄1zc ,

where tc = 1 − ∣q1∣2 − 3∣q3∣. �e structure of P(zc) and its roots are plotted in Fig. 7(b). �e function
P has two negative-sense roots in either end of the dumbbell, four exterior positive-sense roots, and
one positive-sense root on the vertical sliver. �is example also highlights that the non-analyticity of
P signi�cantly increases its complexity. �e last four terms of P form an analytic cubic function in zc ,
which could have at most three distinct roots, but adding the anti-analytic z̄c increases the number
of roots to seven.
While more complicated than the previous example, the positions of the roots appear to be

physically reasonable, with one negative-sense root appearing in each end of the dumbbell. �e
central positive-sense root appears to be associatedwith the positionwhere the vertical sliver dissolves.
However, close inspection reveals that its position is not perfectly aligned with the point where the
two sides of the object �rst come into contact. Instead, it appears to mark the center of the inverted
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Figure 7: (a) Time-evolution of a dumbbell-shaped object described by a = 1, q1 = − 710 , q3 = −
1
4 , B =

3
5 , and all other

Laurent series coe�cients are zero. �e gray curves are plotted at intervals of 15 tc . Positive-sense roots of the function P
are shown by triangles, and negative-sense roots are shown by circles. (b) �e structure of the corresponding function
P, with the dashed lines corresponding to contours of ∣P(z)∣ at n2−n+1

4 for n ∈ N, and the colors corresponding to the
argument using the key given in Fig. 5.

section of the contour at t = tc. Figure 8 shows a plot of which root the Newton–Raphson iteration
converges to, depending on the starting guess. For starting points z(0)c within the object, most
will converge to the two negative-sense roots or the central positive-sense root. �e denominator
∣Pz∣2 − ∣Pz̄∣2 in Eq. 62 vanishes on two approximate ellipses surrounding each negative-sense root.
While it is not physically valid to simulate the dissolution of the object to collapse, this example

highlights that the structure of P and the position of its roots may be more complicated than in the
previous example considered, and thus any further mathematical analyses would have to take into
account this possibility.

6.3. �ird example: transitions in behavior as �ow strength is altered
�e �nal example is a three-pronged object given by the initial non-zero Laurent coe�cients

a = 1, q2 = − 49100 , q5 = − 17
100 , q8 = − 3

40 , q11 = − 27
1000 , and q14 = − 3

500 . Unlike the previous two examples,
the collapse point equation is di�cult to determine manually due to the large number of Laurent
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Figure 8: Plot showing which root of P a Newton–Raphson iteration will converge to when starting at z(0)c , for the
dumbbell-shaped example. �e �ve positive-sense roots of P are shown by black triangles, and the two negative-sense
roots are shown by black circles. Each point is colored according to the argument of the root that it converges to, with
the central root being shown in white. Darker shades show regions that require more iterations to converge.
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Figure 9: Plot of the collapse point equation P(zc) for the three-pronged object for (a) B = 0, and (b) B = −
9
10 . �e

colors correspond to the argument of P(z) using the same scale as Fig. 5. �e positive-sense roots are shown with black
triangles and the negative-sense roots are shown with black circles. �e thick black line shows the boundary of the object.
�e thin dashed grey lines are contours of ∣P(z)∣ at 14 (n

4
+ 1) for n ∈ N0.

series terms that must be considered. However, a computer code was written that found it to be

P(zc) = z̄c − Btc − q̄14z14c + z11c (−q̄11 + 14q̄14q2) + z8c(−q̄8 + 11q̄11q2 + 14q̄14q5 − 63q̄14q22)
+z5c(−q̄5 + 8q̄8q2 + 11q̄11q5 + 14q̄14q8 − 33q̄11q22 − 84q̄14q2q5 + 98q̄14q32)
+z2c(−q̄2 + 5q̄5q2 + 8q̄8q5 + 11q̄11q8 + 14q̄14q11 − 12q̄8q22 − 32q̄11q2q5
−42q̄14q2q8 − 21q̄14q25 + 22q̄11q32 + 84q̄14q22q5 − 35q̄14q42). (63)

�e le� panel of Fig. 9 shows the structure of the solution polynomial when B = 0. Each of the three
prongs is surrounded by �ve positive-sense roots, and there is a single negative-sense root at the
origin. �e magnitude of P within the object is small, so that most of the object lies within the region
∣P(zc)∣ < 1

4 , meaning that an alteration of the �ow strength could alter the function’s roots. �e right
panel shows the function P when B = − 910 , corresponding to a strong �ow from the right. In this case
a new pair of positive-sense and negative-sense roots appear on the real axis, resulting in a similar
root arrangement to Fig. 7(b).
Figure 10 shows the dissolution process for three di�erent cases of B, for a zoomed-in region

centered on one of the prongs. �e top panel shows the case when B = 0, where the dissolution
process proceeds normally and the object collapses at the single negative-sense root at the origin.

24



-0.3

-0.2

-0.1

0

0.1

0.2

0.3
y

B = 0

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

y

B = −
33
50

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

y

x

B = −
9
10

Original shape
Forward integration

Singular solution

Overlapping solution

Figure 10: Zoomed-in plot of the dissolution process for the three-pronged object, for three di�erent values of the �ow
strength B, showing snapshots of the object boundary at intervals of tc

8 where tc = 0.1608885. �e positive-sense roots
are shown with black triangles and the negative-sense roots are shown with black circles. For B = 0, the object collapses
to the origin at t = tc . For B = −

33
50 , the object boundary overlaps and then a singular solution with a cusp forms at

t = 0.1550602. For B = −
9
10 the boundary forms an overlapping curve at t = tc .
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Since the physical model given in Eqs. 1, 2, & 3 tends to rapidly dissolve sharply curved boundaries,
the three prongs of the object dissolve rapidly enough that they remain connected to each other.
For the case of B = 9

10 shown in the bottom panel of Fig. 10 the situation is di�erent. �e incorpo-
ration of �ow into the evolution equation of Eq. 11 causes the thin part of the prong to dissolve more
rapidly than its end, meaning that in this case, the object becomes disconnected into two regions.
�e behavior is similar to the previous example, where the object boundary overlaps with itself. At
t = tc , the object boundary loops around the two negative-sense roots and the positive-sense root in
the same manner as Fig. 7(a). �is example highlights that only altering �ow strength is su�cient to
cause a transition in the behavior of the dissolution process.

�e transition in behavior is linked with the formation of the new roots in Fig. 9 as B is changed
from 0 to − 910 . However, themiddle panel of Fig. 10 for an intermediate �ow strength of B = − 3350 shows
that this transition is more complicated. In this case, there is only a single negative-sense root in P.
However, during time-evolution, the object boundary �rst overlaps with itself, and then the le� loop
shrinks to zero size, leading to a singular solution with an inverted cusp at time t = 0.1550602 < tc.
We carried out a systematic sweep over the �ow strengths over the range from B = 0 to B = −1:

initially the object collapses to a single point, at B ≈ −0.233 an inverted cusp forms, and at B ≈ −0.794
a second negative-sense root forms, when the le� loop is large enough to persist until tc. �is
result highlights that dissolution process can transition between at least three distinct behaviors.
Furthermore, the result for B = − 3350 shows that even if P only has a single negative-sense root, the
dissolution process may not be straightforward, and may lead to an overlapping boundary or a
singular solution.
Figure 11 shows which roots themodi�ed Newton–Raphson iteration will converge to, for the case

of B = 0. �e plot has an intricate structure and there are many small, distinct regions that converge
to the central root. �e denominator ∣Pz∣2 − ∣Pz̄∣2 in Eq. 62 vanishes on a small loop surrounding the
central root, and starting guesses near this loop are colored in darker shades, indicating that the
root-�nding algorithm takes many iterations to converge. �e plot highlights the di�culty of �nding
the particular roots of interest in a general case.

7. Conclusion

In this paper, we studied a model of object dissolution within a two-dimensional potential
�ow, and we created a numerical implementation of it that allowed us to simulate the dissolution
process for arbitrary objects described in terms of a Laurent series. �e simulations revealed an
exact relationship where the collapse point zc is the root of a non-analytic function given in the
terms of the Laurent coe�cients and the �ow strength. �is relationship was subsequently derived
analytically, but it is unlikely that it would have been discovered without the numerical results as
a guide. �ese simulations made use of a high-order numerical method, and while these methods
are o�en di�cult or too computationally expensive to apply to real engineering problems, this work
demonstrates their power in mathematical analysis: the numerical results for the collapse point are
accurate enough to infer the underlying exact relationship with reasonable con�dence. �ere are
other examples where high-accuracy numerical methods have been used for similar purposes, such
as demonstrating the existence of special solutions to equations [41, 42] or to discovering universal
behavior [43].
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Figure 11: Plot showing which root of the solution polynomial P a Newton–Raphson iteration will converge to when
starting at z(0)c , for the three-pronged object when B = 0. �e ��een positive-sense roots of P are shown by black
triangles, and the single negative-sense root at the origin is shown by a black circle. Each point is colored according to
the argument of the root that it converges to, with the central root being shown in white. Darker shades show regions
that require more iterations to converge.
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�e examples of Section 6 create some interesting theoretical questions for future investigation.
We expect that the �rst example of the pentagonal shape (Subsec. 6.1) represents typical behavior
for most objects, where the dissolution process is well-de�ned, the object collapses to a single point,
and the collapse point function P(zc) has a single negative-sense root. More speci�cally, we expect
this to be true for a large class of cases where the q j are small in comparison to a, and hence the
collapse point function in Eq. 57 will be dominated by the z̄c term and thus likely to have a single
anti-analytic root close to the origin. However, the second example shows that not all cases may
lead to this typical behavior, and object may dissolve into multiple fragments, with P(zc) gaining
additional negative-sense roots. �e third example adds a further complication, showing that only a
minor alteration of the �ow strength B can lead to cases where dissolution is not well-de�ned, even
though P(zc) still has a single negative-sense root. Taken together, these results motivate two further
questions: (A) what the conditions on the initial modes for P to have a single anti-analytic root, and
(B) what are the conditions on the initial modes for the dissolution process to be well-de�ned and
for the object to collapse to a single point?
If questions A and B can be answered, then a further direction would be to identify a procedure

capable of determining the collapse point with absolute certainty. �e modi�ed Newton–Raphson
that was introduced in Subsec. 6.1 is very e�cient at identifying roots, but it is di�cult to determine
a priori which root it will converge to, and plots of the convergence as a function of the starting
guess exhibit a fractal structure as is typical for complex Newton–Raphson iterations. Furthermore,
the non-analyticity of P(zc) creates some di�culties whereby the total number of roots exhibits
fundamentally di�erent behavior than for analytic functions. An analytic cubic polynomial in zc has
exactly three roots (when counted with multiplicity) but the addition of a non-analytic z̄c as in the
second example (Subsec. 6.2) leads to seven roots, �ve of which are positive-sense and two of which
are negative-sense. By using a winding argument, considering the curve P(Re iθ) as R → ∞, we
expect that n+−n− = N where N is the maximum non-zero mode, and n± are the number of positive-
sense and negative-sense roots. We also consider the Newton–Raphson fractals to be interesting in
their own right, since they have a fundamentally di�erent structure than typical Newton–Raphson
fractals due to the one-dimensional set of points where the denominator in Eq. 62 vanishes. �ere is
an interesting correspondence whereby each object has an associated fractal.
A variety of generalizations to the dissolution model could also be explored. �e simple form of

the right hand side of Eq. 11 was based on asymptotic considerations of the concentration pro�le in
the low Péclet number limit, but the numerical method could be extended to more complex growth
laws where higher powers of cos θ and sin θ are present. Since the derivation of the collapse point
function is not highly dependent on the simple form of Eq. 11, it may be possible to generalize this to
more complex growth laws as well. Another extension would be to the case of regular polyhedral
objects, which could be approximated using a large number of terms in a Laurent series.

�e second and third examples of Subsecs. 6.2 and 6.3 show that in some cases an object may
dissolve into several components. In the current numerical method the dissolution process cannot
be accurately simulated beyond the point where multiple fragments form, but it may be possible
to extend the simulation to this case by using recent advances in conformal mapping for multiply
connected domains [44, 45, 46, 47]. �e dissolutionmodel is a particularly interesting example, since
the physical process involves a single domain smoothly transitioning into two. We aim to investigate
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all of these interesting directions in future work.

Appendix A. Component form of the time-evolution equation

�e numerical method introduced in Section 3 is based upon equating the di�erent sine and
cosine components of Eq. 13, which is

−1 + Ba cos θ = Re([ae−iθ −
N
∑
n=0

n(bn − icn)e inθ] [ȧe iθ +
N
∑
n=0

(ḃn + i ċn)e−inθ]) .

Multiplying out these power series yields

−1 + Ba cos θ = Re(aȧ − ȧ
N
∑
n=0

n(bn − icn)e i(n+1)θ + a
N
∑
m=0

(ḃm + i ċm)e i(m+1)θ

−
N
∑
n=0

N
∑
m=0

n(bn − icn)(ḃm + i ċm)e i(n−m)θ). (A.1)

Taking the real component of the bracketed term yields

−1 + Ba cos θ = aȧ −
N
∑
n=0

N
∑
m=0

n [(bnḃm + cn ċm) cos(n −m)θ + (cnḃm − bn ċm) sin(n −m)θ]

+a
N
∑
m=0

(ḃm cos(m + 1)θ + ċm sin(m + 1)θ)

−ȧ
N
∑
n=0

(bn cos(n + 1)θ + cn sin(n + 1)θ). (A.2)

Collecting terms with factors of sine and cosine yields

−1 + Ba cos θ = aȧ −
N
∑
n=0

n(bnḃn + cn ċn)

−ȧ
N+1
∑
n=1

(n − 1)(bn−1 cos nθ + cn−1 sin nθ) + a
N+1
∑
m=1

(ḃm−1 cosmθ + ċm−1 sinmθ)

−
N
∑
k=1

N−k
∑
m=0

[(m + k)(bm+k ḃm + cm+k ċm) cos kθ

+(m + k)(cm+k ḃm − bm+k ċm) sin kθ +m(bmḃm+k + cm ċm+k) cos kθ

−m(cmḃm+k − bm ċm+k) sin kθ]. (A.3)

Equating the terms with di�erent factors of sine and cosine yields Eqs. 14, 15, 16, and 17, which
together form the linear system that is used in the numerical integration method.
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